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Abstract

We address the problem of developing discriminative, yet

invariant, features for texture classification. Texture varia-

tions due to changes in scale are amongst the hardest to

handle. One of the most successful methods of dealing with

such variations is based on choosing interest points and

selecting their characteristic scales [Lazebnik et al. PAMI

2005]. However, selecting a characteristic scale can be un-

stable for many textures. Furthermore, the reliance on an

interest point detector and the inability to evaluate features

densely can be serious limitations.

Fractals present a mathematically well founded alterna-

tive to dealing with the problem of scale. However, they

have not become popular as texture features due to their

lack of discriminative power. This is primarily because: (a)

fractal based classification methods have avoided statistical

characterisations of textures (which is essential for accurate

analysis) by using global features; and (b) fractal dimen-

sion features are unable to distinguish between key texture

primitives such as edges, corners and uniform regions.

In this paper, we overcome these drawbacks and develop

local fractal features that are evaluated densely. The fea-

tures are robust as they do not depend on choosing in-

terest points or characteristic scales. Furthermore, it is

shown that the local fractal dimension is invariant to local

bi-Lipschitz transformations whereas its extension is able

to correctly distinguish between fundamental texture prim-

itives. Textures are characterised statistically by modelling

the full joint PDF of these features. This allows us to de-

velop a texture classification framework which is discrimi-

native, robust and achieves state-of-the-art performance as

compared to affine invariant and fractal based methods.

1. Introduction

In this paper, we address the problem of classifying sin-

gle images of textures obtained under unknown viewpoint

and illumination conditions. As is well documented by now,

this is an extremely demanding task, specially under such

unconstrained settings, due to the large intra-class and small

(a) (b) (c) (d)

Figure 1. Changing scale can have a dramatic impact on the ap-

pearance of a material: (a) and (b) are examples of leaf and (c)

and (d) of skin taken at different scales while keeping all other

parameters constant.

inter-class variation that textures exhibit. It therefore be-

comes crucial to develop texture features that are not only

discriminative across many classes but also invariant to key

transformations, such as rotation, scaling, affine illumina-

tion changes, etc.

Scale variations can have a dramatic impact on the im-

aged appearance of a texture (see Figure 1). While no lo-

cally invariant method can handle scale changes of such

magnitude, our goal in this paper is to build descriptors in-

variant to scale changes in the range shown in Figure 6.

Scale variations in textures are amongst the hardest to

handle and only modest progress has been made in coming

up with scale invariant features [6, 7, 14, 25, 26, 39]. The

most promising methods which have demonstrated good

performance on real world datasets are [20,37,38]. The ap-

proach followed in [20,38] is based on the affine adaptation

process. First, certain interest points are chosen and then

their characteristic scale determined by selecting a local re-

gion for which the Laplacian operator achieves a maximum.

Further processing is done and an affine viewpoint and illu-

mination invariant descriptor is computed based on the se-

lected region. The technique in [37] is based on a fractal

approach which computes a global multi-fractal spectrum

(MFS) vector formed over three different measures.

While features derived from interest points and the affine

adaptation process have proved to be very useful for match-

ing, they could be inappropriate for many texture classifi-

cation tasks. Firstly, interest point detectors typically pro-

duce a sparse output and might miss important texture prim-
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Figure 2. The affine adaptation process might not be suitable for

textures: (a)-(c) are images of felt, velvet and lambswool that do

not posses characteristic scales. Hence, arbitrary regions are de-

tected; (d) is an image of paper where no interest points were

found; (e) is an image of a Brodatz texture; and (f) shows the

detected regions when (e) is scaled down by half and then rescaled

back (after region detection) to original size for comparison pur-

poses. Note that the regions in (e) and (f) do not correspond. All

regions were detected using the Hessian-Affine detector [23].

itives. Secondly, a sparse output in a small image might not

produce enough regions for a robust statistical characterisa-

tion of the texture. As regards the affine adaptation process,

there exist many classes of textures which do not posses a

characteristic scale. Furthermore, there are always issues

regarding the repeatability of the detector and the stability

of the selected region [23]. As a result, features computed

via such a process can be unreliable (see Figure 2).

Fractals present a mathematically well founded alterna-

tive to dealing with the problem of scale. They have found

application in classification [4,10,15,24,34,37], segmenta-

tion [5, 13, 17, 36], synthesis [16] and other important tex-

ture problems [1, 19, 22, 33, 35]. However, the performance

of fractal based texture classifiers has often lagged behind

the state-of-the-art. This is primarily due to two reasons.

Firstly, fractal based classification methods have tradi-

tionally avoided a statistical characterisation of textures pre-

ferring to model them using globally computed fractal di-

mensions or MFS vectors. This is a significant shortcoming

as textures have often shown to be best described by the

statistical distribution of textons [3, 8, 12, 21, 27, 31]. For

instance, to make an analogy with filter banks, considerable

progress was made in both classification and synthesis by

modelling textures using first the mean, then the mean and

variance and finally by the full joint PDF of locally com-

puted filter responses [30]. As such, it should be expected

that the same progression should yield superior results in

the case of fractal features as well. Note that local fractal

features are already the norm in fractal based texture seg-

mentation, where many methods [5, 13, 17, 36] proceed by

first calculating local fractal features, then clustering and la-

belling them followed by various post-processing steps such

as boundary smoothing.

Secondly, many point sets such as those representing

image corners, edges, homogeneous regions and other im-

portant texture primitives have identical fractal dimensions.

As a result, the performance of fractal based classification

schemes has often not been as good as other competing

methods. For instance, classification results obtained by the

leading fractal based method [37] are inferior to those ob-

tained by affine adaptation [20] on the UIUC dataset.

In this paper, we overcome these drawbacks and develop

local, fractal based features which can be evaluated densely.

The features are robust as they do not depend on character-

istic scale selection or the affine adaptation process. Fur-

thermore, it is shown that the local fractal dimension is in-

variant to local bi-Lipschitz transformations, such as local

affine or perspective projections and certain smooth, non-

linear transformations. In addition, we develop a new frac-

tal feature for texture classification, the local fractal length,

and show that it can distinguish between important texture

primitives such as edges, corners, uniform regions, etc. at

the cost of reduced invariance. Textures are then charac-

terised statistically by modelling the full joint PDF of these

features. This allows us to develop a texture classifica-

tion framework which is discriminative, robust and achieves

good performance as compared to the state-of-the-art affine

invariant and fractal based methods [20, 37].

The rest of the paper is organised as follows. Section 2

briefly reviews applicable fractal theory and how it has tra-

ditionally been used for texture classification and segmen-

tation. Next, local fractal features are developed and their

discriminative power and invariance properties discussed.

In Section 3, the new features are empirically validated on

the UIUC [20] and CUReT [9] databases. We conclude in

Section 4 and explore avenues of future work.

2. Fractal Features

Before developing the proposed local fractal features and

discussing their properties, we briefly review fractal theory

as applicable in our scenario.

Review Very loosely speaking, a perfect fractal is a shape

which, amongst other things, appears similar at all scales

of magnification. Due to this property, a perfect fractal can

be decomposed into N similar copies of itself, each scaled

down by a factor s, which tile the original shape exactly. It

often turns out to be the case that the quantities N and s are

related by a power law, i.e. N(s) ∝ s−D where D is defined



Figure 3. Each of the shapes can be decomposed into N simi-

lar copies of itself scaled by a factor of s = 0.5. The num-

ber of half-scaled copies N equals 2, 4 and 8 for the line,

square and cube respectively. This leads to fractal dimensions

of D = − log N/ log s = 1, 2 and 3 as expected. However,

the Sierpinski triangle, by construction, has only N = 3 half-

scaled copies of itself leading to a non-integral fractal dimension

D = − log 3/ log 0.5 = 1.585.

to be the fractal dimension of the shape (though there exist

many other definitions too [11]). For smooth shapes from

classical geometry, such as lines, squares, cubes, etc. the

fractal dimension equals the topological dimension. How-

ever, for irregular point sets, the fractal dimension is not an

integer but lies between the bounding topological dimen-

sions (see Figure 3). As such, it can be loosely interpreted as

a factor governing the irregularity of the point set or some-

times as the roughness of the shape. The concept of fractal

dimension has been generalised to many cases where the

point set being considered is not a perfect fractal [11], such

as multi-fractals and statistically self similar fractals.

There are three primary ways in which fractal features

have been computed from images and applied in texture

analysis. In the first, the surface which generated the image

is modelled as a fractal, typically using a fractional Brown-

ian motion model, and its roughness calculated in terms of

the Hurst parameter or extensions [10, 15]. The surface

roughness then acts as a parameter for discrimination be-

tween classes. In the second method, an image I is directly

modelled as an intensity surface (x, y, I(x, y)) and its frac-

tal dimension is used to parameterise the texture [17,24,36].

Finally, an image can also be seen as a union of point sets,

each of whose fractal dimension is taken together to form

an MFS vector [34, 37]. However, in much of previous re-

search, the focus has been on a scale variant analysis of tex-

tures rather than deriving scale invariant features.

The method of Xu et al. [37] falls in the third category.

In it, a 26 dimensional global MFS vector is computed per

measure. Given a texture image, its q-th measure moment

is calculated as a sum over a partitioning of the image into

non-overlapping boxes of length r. Assuming that the mo-

ment varies with r as rβ , the MFS vector is calculated from

β via a Legendre transform. Three measures are used in all

(Gaussian, energy and Laplacian) and the individual MFS

vectors concatenated to give a final 78 dimensional MFS

feature vector. In essence, the MFS vector is a collection

of fractal dimensions and therefore avoids a statistical de-

scription of the texture. The MFS vector is proved to be

invariant to geometric global bi-Lipschitz transforms and to

multiplicative changes in the illuminant intensity (full affine

illumination invariance can’t be achieved due to properties

of the Gaussian measure). The MFS vector is quick to com-

pute and achieves good results on the UIUC database using

nearest neighbour classifiers. Nevertheless the performance

is inferior to that of [20]. The authors note that this is pri-

marily due to the MFS vector being relatively less robust

to illumination changes and also as the images in the UIUC

database are not large enough for stable MFS vector compu-

tation. However, as will be shown, the poor performance is

also due to the use of globally computed fractal dimensions

which are not very discriminative.

Local fractal features Our approach is based on the as-

sumption that, given a suitable measure µ, the “size” of

local point sets in textured images follows a local power

law. To take a concrete example, given an image I , let

µ(B̄(x, r)) be the sum of all pixel intensities that lie within

a closed disk B̄ of radius r centred at an image point x, i.e.

µ(B̄(x, r)) =
∑

‖y−x‖≤r I(y). We hypothesise that

µ(B̄(x, r)) ∝ rD(x) (1)

⇒ log µ(B̄(x, r)) = D(x) log r + L(x) (2)

where D(x) is the local fractal dimension, also known

as the Hölder exponent. While this power law assump-

tion might appear overly restrictive at first, it turns out to

be a surprisingly good approximation for many real world

cases [11]. In particular, Figure 4 illustrates the quality of

the approximation on four real world texture images taken

from the UIUC database. The log µ versus log r plots for

eight image points are shown in the graph. As can be seen

in each of the eight cases, the points lie along a straight line

indicating that the power law is being followed faithfully.
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Figure 4. The log µ versus log r plots for 8 points in 4 images

from the UIUC texture database are shown. Firstly, all the 8 plots

are straight lines indicating that the local power law assumption

holds true. Secondly, all 4 lines from the same class are clustered

together (in fact, for each r, the 4 points per class appear near

coincident) with a distinct difference between the 2 classes. This

shows that local fractal features can be used to distinguish textures.



While there exist many methods for estimating the frac-

tal dimension, we choose to simply read off D(x) and L(x)
as the slope and intercept of the log µ versus log r graph

respectively (more sophisticated techniques can only im-

prove estimates). It should be noted that estimates of the

slope and intercept can be obtained densely, without rely-

ing on any pre-defined interest point detector. Furthermore,

no specific characteristic scale is chosen. In fact, robust line

fitting methods can be utilised so that even if there are noisy

measurements at a few scales (which could influence char-

acteristic scale selection) the slope and intercept of the fitted

line remain relatively stable.

Discriminative power and invariance While it might be

plausible to apply the fractal model to textures, we still have

to determine how useful fractal features are for classifica-

tion. In fact, it turns out that the local fractal dimension by

itself is not very discriminative. As Figure 5 demonstrates,

many fundamental texture primitives, such as homogeneous

regions, edges, corners, etc. have identical local fractal di-

mension D(x). However, the local intercept L(x) is a good

feature for distinguishing between such primitives. In gen-

eral, exp(L) can be interpreted as the D-dimensional fractal

length of µ, i.e. the “size” of µ when measured with a unit

of “size” rD. As such, we define L(x) to be the local (log)

fractal length. While the idea of lacunarity [17,32] has been

experimented with to distinguish fractals with identical di-

mension, fractal lengths have not been used as features for

texture classification to the best of our knowledge.

The fact that local fractal features can be used to distin-

guish texture classes can also be seen from Figure 4. Two

images of fabric and two of granite from the UIUC texture

database are shown along with log µ versus log r plots of

eight image points. The lines from the fabric points are

clustered together as are the lines from the granite points,

though the two sets are distinct.

As regards invariance, any image transformation which

leaves the set of µs unchanged, such as image rotation, will

have no impact on D and L (affine illumination transfor-

mations can also be incorporated in this category). Further-

more, for perfect fractals, D is invariant to scale changes by

Figure 5. For uniform regions, edges and corners, µ(B̄(x, r))
equals πr2, π

2
r2 and π

4
r2 respectively. The fractal dimension is

2 in each case. However, the fractal length is different and can

therefore be used to distinguish between such texture primitives.

definition. In fact, D is invariant to bi-Lipschitz transfor-

mations of the image including affine and perspective dis-

tortions as well as certain non-linear mappings such as x2

and ex on the bounded interval [10, 100]. On the other hand,

L has more discriminative power but in practise only rota-

tional invariance. These points can be seen as follows (the

proof proceeds along the lines of the one in [37]).

A bi-Lipschitz function f must be invertible and satisfy

the constraint c1‖x − y‖ ≤ ‖f(x) − f(y)‖ ≤ c2‖x − y‖
for constants c2 ≥ c1 > 0 (essentially, smooth invertible

mappings where both the original and the inverse function

have bounded first derivative are bi-Lipschitz). Given a

point x in an image I for which the power law holds, i.e.

log µI(B̄(x, r)) = D log r+L, we would like to determine

the invariance of L and D for a bi-Lipschitz transformed

image I ′(f(x)) = I(x).

Let B̄(f(x), r) be a closed disk or radius r centred

around the transformed point f(x) and log µI′ = D′ log r+
L′ be the log of its measure. Since f is invertible, there ex-

ists a point set P which is the pre-image of B̄(f(x), r) and

hence µI(P ) = µI′(B̄(f(x), r)). The bi-Lipschitz con-

straint now ensures that B̄(x, r/c2) ⊆ P ⊆ B̄(x, r/c1)
so that µI(B̄(x, r/c2)) ≤ µI(P ) ≤ µI(B̄(x, r/c1)) since

a subset’s measure must be less than or equal to the orig-

inal set’s measure. Noting that µI(P ) = µI′(B̄(f(x), r))
and substituting for the power law gives D log ( r

c2

) + L ≤
D′ log r +L′ ≤ D log ( r

c1

)+L which implies that D′ = D
but L′ 6= L. Thus the local fractal dimension is invari-

ant to bi-Lipschitz transformations whereas the local fractal

length is not.

Statistical characterisation In order to characterise tex-

tures statistically, the full PDF of the fractal features is mod-

elled (details are given in Section 3). Figure 6 shows some

texture images, and corresponding fractal dimension distri-

butions. As can be seen, the distributions do not change

much within a class and are yet distinct across all four

classes (two different types of brick and two types of fabric).

This is despite the fact that there is considerable intra-class

variation including significant scale and perspective trans-

formations as well as non-rigid surface deformations.

While distributions of local features are by now stan-

dard in texture classification [3, 8, 12, 18, 21, 27, 30, 31] we

would still like to briefly point out their advantages over

globally computed feature vectors. Firstly, feature distri-

butions are more representative than global averages. For

instance, most natural surfaces, and particularly inhomoge-

neous ones, will have an entire distribution of fractal dimen-

sions corresponding to areas of different roughness rather

than a global surface roughness parameter. Secondly, local

distributions can be made relatively robust to real world ef-

fects such as shadowing or occlusion of small parts of the

image. Thirdly, locally bi-Lipschitz invariant features can



Figure 6. Images from four texture classes are shown along with

their associated distributions of local fractal dimensions. Note that

both classes of brick images have significant scale and perspec-

tive distortions while the two types of fabric also have consid-

erable non-rigid surface deformation. Nevertheless, the densely

sampled feature distributions are very similar within a class (due

to bi-Lipschitz invariance) while also being easily distinguishable

across the four classes.

account for more types of transformations than globally in-

variant ones. Finally, assuming that a fractal model holds

locally is less restrictive than assuming it holds globally.

3. Texture Classification

In this section, we make concrete the local feature dis-

tributions and classifiers that are used. Experimental results

are also presented on the UIUC and CUReT texture data-

bases.

Features Most fractal methods are based on measures

calculated over filter responses. For instance, [37] generate

features by defining measures over Gaussian, Laplacian and

energy filters. Filters can smooth over image noise and lead

to more robust features. However, they also have the draw-

back of lowering the level of bi-Lipschitz invariance. Note

that this might not be a serious limitation in some cases as

bi-Lipschitz invariant features are dependent on the rate of

change of filter responses which might be less affected than

the absolute value of the filter responses themselves. Thus,

basing fractal features on filter response measures depends

on the specific application at hand. It should be avoided if

there is a significant drop in the level of invariance. How-

ever, in our case, we also empirically verified that using fil-

ters does indeed lead to better classification performance.

We therefore characterise textures by the distribution

of local fractal dimension and fractal length features ob-

tained from multiple filter measures rather than just the

single measure discussed so far. Defining D(x) =
[Dµ1

(x) . . . Dµn
(x)] and L(x) = [Lµ1

(x) . . . Lµm
(x)] we

estimate the joint density of D, as well as that of L. This

boosts classification as observing how two measures covary

provides more information than knowledge about how each

varies independently.

Multiple measures are generated by first pre-filtering the

images using the MR8 filter bank [31] and then applying

the standard sum measure to each of the filter response im-

ages. The MR8 filter bank is a rotationally invariant, non-

linear filter bank with 38 filters but only 8 filter responses.

It contains edge and bar filters, each at 6 orientations and

3 scales, as well as a rotationally symmetric Gaussian and

Laplacian of Gaussian filter (see Figure 7). Rotational in-

variance of the edge and bar filters is achieved by taking

the maximum response over all orientations (more details

can be found in [31]). Thus, in our case, µi(B̄(x, r)) =∑
‖y−x‖≤r |fi(y)| where fi = maxθ F θ

i ⋆ I for 1 ≤ i ≤ 8
represents the i-th filter response image and the absolute

value of filter responses has been taken to satisfy the mea-

sure requirement µ ≥ 0.

Each filter is made zero mean so as to be invariant

to shifts in the illumination intensity. However, rather

than achieve full affine illumination invariance by post-

processing filter responses to have unit variance, we nor-

malise by Weber’s law [21, 31] instead as this is empiri-

cally found to gives better results. Also based on empiri-

cal results, only five measures were used for calculating D.

The fractal dimensions calculated using the other three mea-

sures were found to be highly correlated and thus discarded.

These measures correspond to the Gaussian, medium scale

bar filter and smallest scale edge filter. However. all eight

measures were used for calculating L.

In summary, D and L are estimated at each pixel x. The

Figure 7. The MR8 filter bank.



local fractal dimension D(x) is a 5 dimensional vector in-

variant to geometric bi-Lipschitz transformations (modulo

filter response variations) while the local fractal length L(x)
is 8 dimensional and only rotation invariant. Both D and L

are chosen to be invariant to local shifts in the illuminant

intensity alone rather than full local affine illumination in-

variance.

Classification Our classification approach is standard and

is based on nearest neighbour matching using a bag of vi-

sual words model. Owing to their different levels of invari-

ance and discriminative power, fractal dimension and frac-

tal length features are not combined into a single feature.

Instead a separate classifier is learnt based on each feature

individually – though the procedure for learning either is

identical.

In the learning stage, either fractal dimension or frac-

tal length features are computed densely from each training

image. For every texture class in turn, features from a ran-

domly chosen subset of training images are aggregated and

clustered using the K-Means algorithm. The resultant clus-

ter centres are known as textons and are aggregated over

classes to form a dictionary of exemplar features. Given a

texton dictionary, a model is learnt for a particular training

image by labelling each of the image pixels with the tex-

ton that lies closest to it in feature space. The model is the

normalised frequency histogram of pixel texton labellings.

Each texture class is represented by a number of models cor-

responding to training images of that class which coarsely

sample the imaging parameters.

In the classification stage, the set of learnt models is used

to classify a novel image into one of the texture classes.

This proceeds as follows: the fractal dimension or the frac-

tal length features of the test image are generated and the

pixels labelled with textons from the appropriate texton dic-

tionary. Next, the normalised frequency histogram of tex-

ton labellings is computed. A nearest neighbour classifier is

used to assign the texture class of the nearest model to the

test image, where the distance between two normalised fre-

quency histograms is measured using the χ2 statistic, where

χ2(x,y) = 1
2

∑
i

(xi−yi)
2

xi+yi

. In our experiments, we found

that the size of the texton dictionary had very little affect

on performance. The size of the dictionary was therefore

set to about 2500 textons for both the UIUC and CUReT

databases.

Results on the UIUC database The UIUC database [20]

contains 40 images each of 25 different texture classes

thereby giving 1000 images in all (each image has reso-

lution 640 × 480). The database represents a major im-

provement over the CUReT textures [9] in that materials

are imaged under significant viewpoint variations and some

also have considerable surface deformations (see Figure 6

for examples). However, a drawback is that it is also much

smaller than the CUReT database, both in the number of

classes as well as the number of images per class. It also

has very few instances of a given material so that it is dif-

ficult to perform categorisation experiments [3, 12] or de-

duce generalisation properties of features. Furthermore, the

high resolution of the images makes it unclear how features

will performance in real world settings where textured re-

gions on objects might be much smaller. Nevertheless, as

far as scale and other viewpoint variations are concerned,

the UIUC database is by far the most challenging and we

therefore test the proposed features on it.

To assesses classification performance, M training im-

ages are randomly chosen per class while the remaining

40 − M images per class are taken to form the test set.

Note that [20] present single descriptor results for the soli-

tary case of M = 10 (all other results are for combinations

of descriptors such as spin images and RIFT). We therefore

implement their system so as to make comparisons as the

training set size is varied. The best performance achieved

by [20] for M = 10 is 90.15% (mean value over 200

splits) using spin image descriptors and combined classi-

fiers based on Harris-affine and Laplacian blob detectors.

Our implementation of their system achieves a comparable

90.17 ± 1.11%.

M D L [20] [37]

20 95.40±0.92 94.96±0.91 93.62±0.97 93.04

15 94.09±0.98 93.66±0.96 92.42±0.99 91.11

10 91.64±1.18 91.25±1.13 90.17±1.11 88.79

05 85.35±1.69 84.96±1.66 84.77±1.54 82.99

(a) (b) (c) (d)
Table 1. UIUC results as the number of training images M is var-

ied: (a) fractal dimension; (b) fractal length; (c) and (d) the meth-

ods of [20] and [37] respectively. Means and standard deviations

have been computed over 1000 random splits of the training and

test set.

Table 1 compares the performance of our local fractal

dimension and length descriptors with the methods of [20]

and [37]. As can be seen, the performance using either D or

L is better than that achieved by the state-of-the-art fractal

based method of [37]. Our results also compare favourably

with that of [20]. For M = 20, local bi-Lipschitz invari-

ant fractal dimension features achieve classification rates of

95.40 ± 0.92% while the affine adaption based spin im-

age features of [20] achieve 93.62 ± 0.97%. Local frac-

tal length features achieve 94.96 ± 0.91%. It is interesting

to note that the performance of 5D fractal dimension fea-

tures is better than that of the 100D spin images of [20].

This is due to the advantage of densely sampling features

while avoiding characteristic scale selection. What is also

curious is that 8D rotation invariant fractal length features

also achieve such good performance despite the large scale



changes present in the UIUC dataset. However, this result is

consistent with the trend in [28] where vanilla rotationally

invariant patches were shown to give 97.83 ± 0.63% using

standard nearest neighbour classifiers.

Results on the CUReT database The CUReT data-

base [9] is a larger database and contains 61 texture classes

with 205 images per class. However, the standard method-

ology on this database is to report results for 92 images per

class. The remaining images do not have a sufficiently large

portion of the texture visible to be cropped from the back-

ground and are therefore excluded.

There are a number of factors that make the CUReT data-

base challenging for a scale invariant method. To start with,

the images in the database do not exhibit significant scale

variation. As a result, scale invariant features tend to per-

form worse than features with just rotation or even no in-

variance but higher discriminative power. In addition, the

images have low resolution (200×200 pixels) and are there-

fore not well suited to sparse interest point based methods.

Nevertheless, one can expect to see such conditions in the

real world and therefore a scale invariant method should still

yield acceptable results on the CUReT database if it is to be

considered widely applicable.

M D L

46 96.12±0.37 97.50±0.30

23 92.50±0.51 94.69±0.45

12 86.70±0.72 89.74±0.66

06 78.05±0.97 81.67±0.96

(a) (b)
Table 2. CUReT results as the number of training images M is

varied: (a) fractal dimension and (b) fractal length. Means and

standard deviations have been computed over 1000 random splits

of the training and test set.

The evaluation methodology is similar to that used on the

UIUC database. M images are randomly chosen per class

for training, while the remaining 92 − M images per class

are taken to form the test set. Table 2 presents the classifica-

tion performance of the local fractal dimension and length

features. For M = 46 training images, they achieve per-

formances of 96.12 ± 0.37% and 97.50 ± 0.30% respec-

tively. By contrast, the affine adaptation method of Lazeb-

nik et al. using nearest neighbour classification achieves

only 72.50 ± 0.7% [38]. This result is somewhat surpris-

ing but highlights the inadequacies of sparse, affine adapta-

tion based methods. Even when multiple high dimensional

descriptors are combined with multiple detectors and so-

phisticated SVMs employed, the affine adaptation results

improve to only 95.30 ± 0.4% [38].

As is to be expected on the CUReT database, rotation in-

variant fractal length feature achieve better results than the

bi-Lipschitz invariant features. However, these are slightly

inferior to 97.64% which is the best rotation invariant result

obtained by nearest neighbour classification on this data-

base [29]. The best rotation invariant results for any classi-

fier is 99.02% [2] when Gaussian Bayes classifiers are used.

4. Conclusions

In this paper, we have developed locally invariant, dense

fractal features for the canonical texture classification prob-

lem. Features based on the fractal dimension are invari-

ant to local bi-Lipschitz transformations and are robust as

they avoid interest point detection and the affine adaptation

process. Fractal length features are slightly more discrimi-

native but posses only rotational invariance. Both features

can be made invariant to affine illumination transformations

if desired. On the UIUC database, classification based on

these features yields results which are at least as good as

leading fractal and affine adaptation based methods. How-

ever, on the CUReT database, the performance of the pro-

posed features is dramatically better. These results demon-

strate that the fractal model is widely applicable to many

texture classes and that fractal features provide a viable al-

ternative to the affine adaptation process for dealing with

scale and other viewpoint variations in textured images.

Yet, it should be noted that even though the best results

are in the mid nineties or higher, the standard texture clas-

sification problem can not be considered solved or easy. In

actuality, classification performance using only a few train-

ing image can drop quite dramatically even if there are only

a small number of classes. Considerable progress therefore

needs to be made in designing features and classifiers be-

fore performance can be considered acceptable. Further-

more, improved understanding of features and classifiers

can only benefit both the categorisation problem as well as

the simultaneous segmentation and classification problem

in cluttered, real world scenes.

An area which we would like to explore as future work

is to see if the fractal model can be made even more ap-

plicable. The sum measure used in this paper does not in-

duce local fractal behaviour in all images. Even when it

does, there is no guarantee that the resultant features are the

most discriminative. It would therefore be preferable to ac-

tually learn a measure which induces fractal behaviour for

the given classification task and leads to improved perfor-

mance.
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